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Abstract

Recent progress is reported in development of ab initio computational methods for the

electronic structures of molecules employing atomic spectral-product representations. In

this approach, the physically significant many-electron eigenstates of constituent atoms

provide a computational basis for descriptions of the electronic structure of matter as an

alternative to more commonly employed atomic- or molecular-orbital-based representa-

tions. The Hamiltonian matrix is seen to be a sum over atomic energies and a pairwise

sum over Coulombic interaction terms which depend only on the separations of the in-

dividual atomic pairs. Overall electron antisymmetry can be enforced in the approach

by unitary transformation when appropriate, rather than as a possibly encumbering or

unnecessary global constraint. The matrix representative of the antisymmetrizer in the

spectral-product basis, which is equivalent to the metric matrix of the corresponding ex-

plicitly antisymmetric basis, provides the required transformation to antisymmetric or

linearly-independent states after Hamiltonian evaluation. Particular attention is focused

in the present report on properties of the metric matrix and on the spectral composi-

tions of molecular eigenstates described in spectral-product representations. Illustrative

calculations are reported for simple but prototypically important diatomic (H2, CH) and

triatomic (H3, CH2) molecules employing recently devised algorithms and computer codes.

This particular implementation of the approach combines valence-bond constructions of

standard tableau functions and matrices with transformations to atomic eigenstate product

representations, employing Slater-orbital-based one- and two-electron integral evaluations.

The calculated metric matrices and corresponding potential energy surfaces obtained in

this way elucidate a number of aspects of the spectral-product development, including the

nature of closure in the spectral-product representation, the general redundancy of its ex-

plicitly antisymmetrized form, the convergence of the two apparently disparate descriptions

to a common invariant subspace, and the manner in which a chemical bonding descriptor

is provided by the atomic spectral compositions of molecular eigenstates obtained in the

representation. Concluding remarks describe briefly additional studies in progress and the

prognosis for performing spectral-product calculations more generally and efficiently.
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I. Introduction

The electronic eigenstates of atoms provide a well-known formal basis for simple product

representations of molecular electronic wave functions and interaction energies in long-

range separation limits.1 More generally, ab initio investigations of the electronic structures

and associated potential energy surfaces of molecules tend to employ explicitly antisym-

metric representations based on early molecular-orbital or valence-bond descriptions of the

relevant electronic degrees of freedom.2−5 In these approaches, the presence of the compo-

nent atomic constituents is not made explicit, but is evident largely in the choices of atomic

orbitals employed in the molecular representational basis sets. It has apparently proved

difficult to base a general ab initio computational approach to the electronic structures

of matter directly on an atomic representation,6 in spite of the fact that atoms clearly

comprise molecules and other forms of matter.

A recent series of reports emphasizes both the difficulties and potential advantages of

adopting an atomic eigenstate-product representation in ab-initio calculations of molecular

electronic structures.7−11 This program of study, the motivations and purposes of which

were described earlier,12 is predicated largely on the demonstrable closure of the outer

spectral product of complete constituent atomic eigenstates for representations of molecular

electronic states in the absence of explicit (term-by-term) enforcement of aggregate electron

antisymmetry. Although both conceptual and computational barriers must be overcome in

such an approach, certain potential advantages follow from its adoption. These include the

possibility of performing accurate atomic and atomic-interaction calculations once and for

all and retaining such information for repeated molecular applications, employing entirely

analytical methods in calculating the angular dependences of atomic interactions, and the

opportunity to enforce molecular antisymmetry when required, rather than as a possibly

encumbering overall global constraint, to mention some important examples.7−12

In the present contribution, additional theoretical aspects of the atomic spectral-product

approach to molecular electronic structure are reported, the essential features of a computer

code suite for performing such calculations are described, and selected computational appli-

cations to prototypically important diatomic (H2, CH) and triatomic (H3, CH2) molecules
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are presented. Calculations of metric matrices in these cases, and of corresponding po-

tential energy curves and surfaces, in spectral-product representations illustrate the capa-

bilities of the valence-bond- and Slater-orbital-based algorithms and codes devised. The

metric matrices, which provide a connecting bridge between spectral-product representa-

tions in the absence or presence of term-by-term antisymmetry, clarify a number of aspects

of the development, including the nature of closure in the spectral-product representation

and the general redundancy of its explicitly antisymmetrized form. The calculations re-

ported for H2 and H3 characterize the spectrum of the antisymmetrizer as that of a compact

operator in the spectral-product representation, and demonstrate specific redundancies be-

tween commonly employed charge-transfer and one-electron covalent excitations, whereas

the potential energy curves for ground and excited states demonstrate the advantages

of the Slater-orbital-based integral evaluations employed. The spectral compositions of

the atomic-product representations of molecular eigenfunctions are seen to provide highly

satisfying descriptors of chemical bonding in CH and CH2 molecules, which have played

important historical roles in the development of accurate ab initio quantum methods for

electronic structure and spectra.13,14

The theory is described in Section II, where the atomic spectral representations of aggre-

gate electronic degrees of freedom are defined, the forms of metric and Hamiltonian ma-

trices with and without explicit antisymmetrization are reported, and the unitary trans-

formation formalism for isolation of the physical and linearly-independent Hamiltonian

subspaces are given and their equivalence established. Calculations employing the recently

devised algorithms and computer codes, reported in Section III, include metric matrices

and energy eigenvalues for the aforementioned H2, CH, H3, and CH2 molecules. Discussion

and concluding remarks presented in Section IV describe additional studies in progress and

strategies employed in performing atomic spectral-product calculations more generally and

efficiently.
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II. Theoretical Background and Developments

Selected background information is provided in this Section in summary of previously

devised aspects of the spectral-product approach to molecular electronic structure,7−12

and new theoretical developments and clarifications are reported. The atomic spectral-

product representations of molecular electronic states of interest here are described in

Section A, construction of Hamiltonian matrices in these representations are described in

Section B, and the role of the aggregate metric matrix in isolation of physically significant

Schrödinger eigenstates is described in Section C.

A. Atomic Spectral-Product Representations.

The adiabatic (Born-Oppenheimer) electronic states obtained from solution of the non-

relativistic Schrödinger equation

Ĥ(r : R)Ψ(r : R) = Ψ(r : R) ·E(R) (1)

provide useful first approximations to the chemical and physical attributes of molecules and

other atomic aggregates.15 Here, the row vector Ψ(r : R) contains the desired eigenstates,

the diagonal matrix E(R) contains the corresponding energy eigenvalues, r refers to the

space and spin coordinates of the nt electrons of the system, and R designates the fixed

positions (R1, R2, . . .RN ) of the N atomic nuclei.

The non-relativistic Hamiltonian operator in Eq. (1),

Ĥ(r : R) =

nt
∑

k=1

−
h̄2

2m
∇2

k −

N
∑

α=1

nt
∑

k=1

Zαe2

rkα
+

nt−1
∑

k=1

nt
∑

k′=k+1

e2

rkk′

+

N−1
∑

α=1

N
∑

β=α+1

ZαZβe2

Rαβ
, (2)

contains the familiar kinetic, electron-nuclear attraction, and electron and nuclear repulsion

operators and is totally symmetric in all electron coordinates.16 Consequently, the solutions

of Eq. (1) can be classified according to the irreducible representations of the symmetric

group Snt
, with the totally antisymmetric solutions providing the physically significant

Schrödinger eigenstates.17

The atomic spectral-product representation is written in the outer-product (⊗) form7−10

Φ(r : R) =
{

Φ(1)() ⊗ Φ(2)() ⊗ · · ·Φ(N)(n)
}

O
, (3)
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where the row vectors Φ(α)(i) contain the orthonormal antisymmetric eigenstates of the

constituent atoms (α = 1 to N) specified by the quantum numbers (E, L, ML, S, MS, P )α,18

with i referring to the coordinates of the nα electrons arbitrarily assigned to the atom α

measured relative to the atomic centers Rα. The subscript “O” in Eq. (3) indicates the

adoption of a particular ordering convention for the vector sequence of spectral-product

functions employed. More detailed descriptions of these and of the other notational con-

ventions of Eqs. (1) to (3) are reported elsewhere.7−12

Although the representation of Eq. (3) is not term-by-term antisymmetric in all electron

coordinates, it is, in fact, complete in the limit of spectral closure for representations of

totally antisymmetric aggregate eigenstates.1,19 Accordingly, Eq. (3) is in this connection

formally equivalent to the more familiar explicitly (term-by-term) antisymmetric form6

ΦA(r : R) ≡ P̂AΦ(r : R)

= P̂A

{

Φ(1)() ⊗ Φ(2)() ⊗ · · ·Φ(N)(n)
}

O
, (4)

where

P̂A ≡ (nt!)
−1/2(n1!n2! · · ·nN !)−1/2

nt!
∑

p=1

(−1)δpP̂p (5)

is the aggregate antisymmetrizer,17 normalized to insure that 〈P̂AΦ(r : R)|P̂AΦ(r : R)〉 →

I in the limit (R → ∞), in accordance with the orthonormality of the square-integrable

antisymmetric atomic eigenstates in the row vectors Φ(α)(i). Alternatively, it is possible

to enforce aggregate electron antisymmetry employing a coset decomposition of the anti-

symmetrizer to isolate those electron permutations not completely internal to the already

antisymmetric atomic eigenstates.6,20

An important difference between the foregoing two representations is found in their re-

spective closure relations. In the case of the orthonormal representation of Eq. (3), the

closure expression is Φ(r : R) · Φ(r′ : R)† = δ(r − r′ : R), where δ(r − r′ : R) applies to

all irreducible representations of Snt
spanned by the basis, whereas the closure expression

is ΦA(r : R) · ΦA(r : R)† = QδA(r − r′ : R) for the non-orthogonal explicitly antisym-

metric representation of Eq. (4), where Q = nt!/(n1!n2! · · ·nN !) is the redundancy of the

explicitly antisymmetric basis of Eq. (4) in the closure limit.10
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B. Hamiltonian Matrices in the Spectral-Product Representations.

It is convenient to rewrite the Hamiltonian operator of Eq. (2) in a form suggested by

the arbitrary assignments of electrons to atoms made in Eq. (3) in constructing spectral-

product matrix representatives. Specifically, the Hamiltonian operator of Eq. (2) is written

Ĥ(r : R) =

N
∑

α=1

Ĥ(α)(i) +

N−1
∑

α=1

N
∑

β=α+1

V̂ (α,β)(i; j : Rαβ), (6)

where

Ĥ(α)(i) =

nα
∑

i

{

−
h̄2

2m
∇2

i −
Zαe2

riα

}

+

nα−1
∑

i

nα
∑

i′=i+1

e2

rii′
(7)

includes the electronic terms arbitrarily associated with the atom α, and

V̂ (α,β)(i; j : Rαβ) =
ZαZβe2

Rαβ
−

nα
∑

i

Zβe2

riβ
−

nβ
∑

j

Zαe2

rjα
+

nα
∑

i

nβ
∑

j

e2

rij
, (8)

includes the Coulombic interaction terms associated with the pair of atoms (α, β).

Employing the basis sets of Eqs. (3) and (4) in variational solutions of Eq. (1) gives the

matrix Schrödinger equations

H(R) · UH(R) = UH(R) · E(R), (9)

and

HA(R) · VH(R) = S(R) ·VH(R) · E(R), (10)

where

H(R) ≡ 〈Φ(r : R)|Ĥ(r : R)|Φ(r : R)〉 =

N
∑

α=1

H(α) +

N−1
∑

α=1

N
∑

β=α+1

V(α,β)(Rαβ), (11)

and

HA(R) ≡ 〈ΦA(r : R)|Ĥ(r : R)|ΦA(r : R)〉 =

N
∑

α=1

H(α)(R) +

N−1
∑

α=1

N
∑

β=α+1

V(α,β)(R),

(12)

are the respective Hamiltonian matrices.
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In Eq. (9), the unitary solution matrix UH(R) diagonalizes the Hamiltonian matrix of

Eq. (11) constructed in the orthonormal basis of Eq. (3). By contrast, the matrix VH(R)

in Eq. (10) is generally not unitary since the metrically-defined Hamiltonian matrix of Eq.

(12) is constructed in the non-orthogonal basis of Eq. (4). Rather, VH(R) satisfies the

condition VH(R)† · S(R) · VH(R) = I,15 with the metric matrix S(R) here and in Eq.

(10) given by the expression

S(R) ≡ 〈P̂AΦ(r : R)|P̂AΦ(r : R)〉 = Q1/2〈Φ(r : R)|P̂A|Φ(r : R)〉, (13)

where the factor Q = nt!/(n1!n2! · · ·nN !) is the aforementioned redundancy of the explicitly

antisymmetric basis of Eq. (4) in the closure limit.10 Evidently, S(R) has an interpretation

as the matrix representative of the antisymmetrizer of Eq. (5) in the basis of Eq. (3),

separate from its role as the metric matrix of the non-orthogonal basis of Eq. (4).

Although the Hamiltonian matrices of Eqs. (11) and (12) are similar in form, the individual

atomic and atomic-pairwise interaction terms shown there differ significantly in the two

representations. Specifically, the atomic terms in Eq. (11) obtained from Eq. (7) are

independent of atomic position, and the Coulombic interaction terms obtained from Eq.

(8) depend only on the vector separation Rαβ of an individual atomic pair (α, β). By

contrast, the terms in Eq. (12), which must be evaluated using the Hamiltonian of Eq.

(2), formally depend on the positions R of all the atoms in the aggregate due to the overall

electron antisymmetry of the basis of Eq. (4). That is, because the electronic coordinates

in the representation of Eq. (4) appear at all the atomic centers, the individual Coulombic

interactions in the Hamiltonian of Eq. (2) can be alternatively inter- or intra-atomic terms,

and the partitioning of Eqs. (6) to (8), which constitutes an assignment of particular

electrons to specific atomic centers, can not be employed in this case.

The simpler forms of the terms appearing in Eq. (11) relative to those in Eq. (12) are

largely consequences of the orthonormality of the spectral-product basis employed in the

absence of prior enforcement of overall aggregate electron antisymmetry, the use of atomic

eigenstates in the representation, and the atomic pairwise-additive nature of the interaction

terms in the Hamiltonian operator of Eq. (6). By contrast, the atomic-pairwise nature
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of the interaction terms in the Hamiltonian operator can not be employed to advantage

in conjunction with use of the explicitly antisymmetric representation of Eq. (4). It spite

of the apparent differences in the two representations, both can give the same physical

Schrödinger eigenstates Ψp(r : R) = {Φ(r : R) · UH(R)}p = {ΦA(r : R) · VH(R)}p and

energies {E(R)}pp under appropriate conditions.

C. Isolation of Physical Eigenstates in the Spectral-Product Representations.

It has been shown that the basis of Eq. (3) spans the totally antisymmetric representation

of the aggregate nt-electron symmetric group Snt
once and only once in the limit of closure,

although other unphysical non-totally-antisymmetric (non-Pauli) representations of Snt

are also spanned by the basis.10 The non-Pauli solutions are accordingly included in the

columns of the unitary transformation matrix UH(R) of Eq. (9). By contrast, although

the solutions of Eq. (10) are totally antisymmetric by construction, they generally become

unstable in large representations, consequent of the linear dependence arising from the

Q-fold redundancy of the basis of Eq. (4) in the closure limit. These two assertions are

closely related, and suggest the possible equivalence of results obtained employing either

“prior” or “post” antisymmetrization in extracting physically acceptable solutions from

the molecular Schrödinger equation in the two representations of Eqs. (3) and (4).

The desired Pauli and linearly-independent solutions can be obtained by transforming

Eqs. (9) and (10) to representations which isolate totally antisymmetric and linearly-

independent subspaces, respectively, and can be shown to be equivalent in the limit of

spectral closure. The unitary transformation matrix US(R) required to accomplish this

partitioning of Eqs. (9) and (10) is obtained from diagonalization

US(R)† · S(R) · US(R) = sd(R) =

(

{sd(R)}pp 0

0 {sd(R)}uu

)

→

(

QIpp 0

0 0

)

(14)

of the Hermitian metric matrix of Eq. (13). Here, the non-negative eigenvalue matrix

sd(R) is partitioned into an upper diagonal {sd(R)}pp containing the largest eigenvalues

ordered in decreasing value, which tend to the indicated common redundancy factor Q in

the closure limit, and a lower diagonal {sd(R)}uu of eigenvalues which tend to zero in this
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limit, so ordered by appropriate arrangement of the columns of the transformation matrix

US(R) into physical (p) and unphysical (u) blocks.

The diagonalization of Eq. (14) is seen to correspond to construction of eigenstates of the

Hermitian antisymmetrizer in the spectral-product basis of Eq. (3) in the form

ΦS(r : R) ≡ Φ(r : R) · US(R) →
{

{ΦS(r : R)}p, {ΦS(r : R)}u

}

, (15)

where {ΦS(r : R)}p contains totally antisymmetric states corresponding to the non-zero

eigenvalues of the antisymmetrizer, and {ΦS(r : R)}u contains non-Pauli states corre-

sponding to the zero eigenvalues of the antisymmetrizer in the closure limit. By contrast,

in the explicitly, or term-by-term, antisymmetric basis of Eq. (4), the states generated by

the transformation of Eq. (14) are written in the canonically orthogonalized form

ΦS(r : R) ≡ ΦA(r : R) ·US(R) · sd(R)−1/2 →
{

{ΦS(r : R)}p, {ΦS(r : R)}u → 0
}

, (16)

which are correctly normalized linearly-independent combinations of the original basis and

un-normalizable null states associated with linearly-dependent combinations of the basis

of Eq. (4).21 In the case of degenerate eigenvalues, the eigenstates of Eqs. (15) and (16)

are generally arbitrary but are nevertheless separated into invariant subspaces. Of course,

in the large-separation limit S(R → ∞) → I, in which case the eigenvalues of the metric

matrix are all unity, both representations of Eqs. (3) and (4) are orthonormal and the

states of Eqs. (15) and (16) are not required.

Equations (14) and (15) indicate that the spectrum of P̂A acting in the domain of the

spectral-product basis of Eq. (3) is that of a compact Hermitian operator,22 with zero

providing a lower limiting point of accumulation of the spectrum and the associated non-

Pauli states {ΦS(r : R)}u of Eq. (15) corresponding to its null space P̂A{ΦS(r : R)}u →

0. The states {ΦS(r : R)}p of Eq. (15) are associated with the upper limiting point,

P̂A{ΦS(r : R)}p → Q1/2{ΦS(r : R)}p, and correspond to the physically significant totally

antisymmetric spectrum of the antisymmetrizer. The linearly-independent combinations

of the term-by-term antisymmetric basis functions of Eq. (4) given by Eq. (16) are

identical to the totally antisymmetric states of Eq. (15) in the closure limit,10 whereas the

linearly-dependent states of Eq. (16) are seen to be eliminated by the development.21
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The physically significant blocks of the Hamiltonian matrices of Eqs. (11) and (12) are

obtained from the matrix US(R) in the upper left-hand forms

{H(R)}pp ≡ {US(R)† · H(R) ·US(R)}pp (17)

{HA(R)}pp ≡ {sd(R)−1/2}pp · {US(R)† · HA(R) · US(R)}pp · {sd(R)−1/2}pp, (18)

where now all terms in both Hamiltonian matrices depend formally on the positions R of

all the atoms in the aggregate. The unitary transformation matrix US(R) of Eq. (14)

obtained from the metric matrix of Eq. (13) is seen to be responsible for incorporating the

non-local effects of inter-atomic aggregate electron permutation symmetry in the Hamil-

tonian matrix of Eq. (11) by virtue of Eq. (17). Overall electron antisymmetry can be

enforced as required in this approach in accordance with the spatial separations of the in-

dividual atoms and the perceived strengths of their interactions in the Hamiltonian of Eq.

(17), rather than as a possibly encumbering overall global constraint, as employed in the

Hamiltonian matrix in Eq. (18). Although the role of the transformation matrix US(R) in

the explicitly antisymmetric representation of Eq. (4) is to isolate the linearly-independent

subspace present therein, it would seem useful to also employ approximation methods in

its evaluation in certain cases, although the more significant advantage of this approach is

expected to be found in connection with Eq. (17).

Finally, identical physically significant Schrödinger eigenstates are obtained from the imme-

diately foregoing Hamiltonian matrices in the form Ψp(r : R) = {Φ(r : R)}p ·{UH(R)}pp,

where {Φ(r : R)}p is obtained from either Eq. (15) or (16) and {UH(R)}pp is obtained

from either of the Hamiltonian matrices of Eqs. (17) or (18). Although the requirements

of computational implementations of the two approaches differ significantly, in view of the

“post” and “prior” incorporation of aggregate electron antisymmetry in the two Hamilto-

nian matrices, the developments are clearly united through use of the metric matrix of Eq.

(13) in isolating a common invariant physical subspace in which to construct Schrödinger

eigensolutions.
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III. Computational Implementations and Applications

Algorithms and computer codes have been devised to evaluate the various expressions

given in the preceding Sections. In brief, a valence-bond code suite (CRUNCH23) has been

modified to accommodate molecular integrals evaluated in real Slater orbitals (SMILES24),

and transformations devised from the standard tableau descriptions of configurational state

functions and Hamiltonian and metric matrix elements of the valence-bond formalism to

the atomic spectral-product expressions. Computational results obtained in this way are

reported in Section A for H2 and H3 molecules, in Section B for diatomic CH, and in

Section C for triatomic CH2. These calculations are illustrative of selected aspects of the

approach, and of the capabilities of the computational algorithms and codes devised, and

are not meant to provide exhaustive computational descriptions of the quantities reported.

A. Diatomic and Triatomic Hydrogen Molecules.

Although the metric matrix is familiar in connection with canonical transformations of

one-electron orbital basis sets,21 its attributes and importance in connection with many-

electron basis states are perhaps less familiar, particularly in the context of the spectral-

product representations described here. Of particular interest is the function of the metric

matrix in providing a measure of the spectral closure of the representation of Eq. (3) in

the absence of explicit antisymmetry and of the redundancy of the representation of Eq.

(4), particularly in connection with commonly employed ionic terms involving the transfer

of one or more electrons from one atom to others. Illustrative molecular calculations

involving hydrogen atoms help to clarify these issues, and demonstrate the capabilities of

the algorithms and codes devised.

In Figure 1 are shown the eigenvalues of the metric matrix of Eq. (13) for symmetric

collinear H3 as a function of atomic separation (Rab = Rbc), constructed in (a) 2s1p

and (b) 3s2p atomic Slater basis sets employing hydrogenic exponents. These atomic

orbitals give representations Φ(H3)(r : R) =
{

Φ(Ha)() ⊗ Φ(Hb)() ⊗ Φ(Hc)()
}

O
which

include 375 and 2187 terms, respectively. The eigenvalues of the antisymmetrizer of Eq.

(5) in these representations are seen to appear only in the allowable interval (0,Q) where
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Q = 3!/(1!1!1!)=6, and to fill the interval for smaller values of atomic separation. The great

many values near 0 in Panel (b) are in accordance with the lower end of the spectrum of P̂A

providing a point of accumulation. The eigenstates corresponding to these approximately

zero eigenvalues refer to non-totally antisymmetric states in the product basis [Eqs. (3) and

(15)], whereas in the prior antisymmetrized basis they refer to linearly-dependent states

[Eqs. (4) and (16)]. Conversely, the states of Eqs. (15) and (16) corresponding to the

largest eigenvalues of Figure 1 refer to approximately totally antisymmetric and linearly-

independent states, respectively. Note that the value Q=6 implies the antisymmetric basis

of Eq. (4) is six-fold redundant in the limit of closure in this case, which redundancy is

removed by the canonical orthogonalization procedure of Eq. (16). As the number of basis

functions and their spatial extent are increased, the eigenvalues of Figure 1 converge to

the upper and lower limiting points of the spectrum for finite values of atomic separation,

whereas they approach unity in the limit of large separation in any square-integrable

representation.

Although large orbital basis sets are generally required to achieve convergence in spectral-

product representation, metric matrices constructed even in small basis sets provide useful

information. In Figure 2 are shown constant-value contours for the two doublet eigenvalues

of the metric matrix for T-shaped H3 as functions of width (w) and height (h) obtained in a

minimal 1s3 spectral-product representation. In panel (a), the contours are monotonically

increasing from that labeled 1.0, whereas in panel (b) they are monotonically decreasing

from that labeled 0.9. The cusps in the contours of both panels indicate the presence

of a seam of intersection in the two surfaces along the w = 1.155 h line corresponding

to D3h symmetry. This high-symmetry seam corresponds to the better-known seam of

intersection of the two lowest-lying doublet energy surfaces in H3,
25 identified here entirely

on basis of the eigenvalues of the metric matrix in the absence of energy calculations. Such

calculations of metric matrices, which entail evaluations only of overlap matrix elements,

can provide useful information in other molecular cases more generally.

The spectral product representation of Eq. (3) is complete employing only the indicated

neutral atomic states, and the associated antisymmetrized basis of Eq. (4) is correspond-

This page is Distribution A: approved for public release; distribution unlimited. Page 13



ingly Q-fold redundant in the closure limit. It is instructive, however, to examine the

effects of adding commonly employed ionic or charge-transfer configurations to the ba-

sis. In Figure 3 are shown the singlet and triplet eigenvalues of the metric matrix of Eq.

(13) for diatomic hydrogen constructed in a 7s5p3d2f1g Slater basis set employing fixed

hydrogen 1s, 2p, 3d, 4f, 5g exponents in Sturmian sequences.26 The eigenvalues shown cor-

respond to single-excitation configuration-interaction calculations, including both covalent

(H-H - 119 terms) and ionic (H+H− and H+H− - 154 terms ) structures. Although the

redundancy factor is Q = 2!/(1!1!)=2 for the spectral-product or covalent representations

of Eqs. (3) and (4) in this case, the presence of the additional charge-transfer terms gives

rise to eigenvalues which appear in the larger interval (0,4). This is a consequence of the

four-fold redundancy of the combined covalent and ionic basis employed in the calculations

of Figure 3 in the closure limit. Specifically, the band of near zero eigenvalues in Figure 3

arises from the near linear-dependence of charge-transfer terms with the diffuse covalent

excitations - this band is absent in the eigenvalue spectrum (0,2) obtained with covalent

terms alone.9,10 Moreover, the bands of eigenvalues approaching 2 for larger separation are

also consequences of the charge-transfer terms, which continue to provide a two-fold redun-

dant explicitly antisymmetric representation in this limit, whereas the bands of eigenvalues

approaching unity at large separation arise from the covalent structures in the representa-

tion. The results of Figure 3 suggest the eigenvalues of the metric matrix can distinguish

among the types of structures present in the representation employed, largely confirm the

redundancy of covalent and ionic terms commonly employed in molecular calculations, and

emphasize the importance of removing these redundancies in large-basis-set calculations.

Illustrations of the capabilities of the Slater-based spectral-product codes devised for energy

calculations are given in Figures 4 and 5, which depict low-lying (n=1 and 2) H2 singlet and

triplet potential energy curves, respectively, obtained from full configuration-interaction

calculations in an optimal 5s3p2d1f valence Slater basis.27 These results are in general but

not precise accord with the most accurate previous calculations available for the indicated

states.28 Of particular interest are the shapes of the B1Σ+
u and E,F1Σ+

g curves, the presence

of a double well in the latter curve and in the G,K1Σ+
g curve, and the large barrier in

the f 3Πu state. The long-range nature of the B1Σ+
u and E,F1Σ+

g curves, which provide
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good approximations to the accurate values, is commonly but subjectively attributed to

contributions from charge-transfer terms. The calculated G,K1Σ+
g and f 3Πu curves provide

reasonably quantitative descriptions of the known detailed shapes of these two curves,

but are not in precise agreement with the results of highly accurate calculations.28 Of

course, highly accurate calculation of the excited-state potential energy curves of H2 are

generally performed employing special basis sets on a state-by-state basis. It is therefore

satisfying that the results of Figures 4 and 5 are obtained from single diagonalizations of

matrices constructed in Slater-based spectral-product representations, which methodology

is applicable to other molecules more generally.

B. Diatomic CH Molecule.

The foregoing spectral-product representations of molecules containing hydrogen atoms

(H2, H3) are closely related to corresponding valence-bond descriptions, the two ap-

proaches differing largely in the normalization conventions employed for orbital-product

states, and a pre-diagonalization of the atomic hydrogen Hamiltonian in the spectral-

product development. The situation is quite different for molecules containing many-

electron atoms. The differences between metric or Hamiltonian matrices constructed in

valence-bond and spectral-product representation can be illustrated in these cases employ-

ing the well-studied diatomic CH molecule as a simple example. In this example, both

valence-bond and spectral-product metric and Hamiltonian matrices are constructed em-

ploying identical hydrogen atom 1s spin orbitals and 1s2(2s22p2 + 2s2p3 + 2p4) carbon

atom valence-shell configurations, the latter giving rise to fifty-five distinct atomic mul-

tiplet states. The valence-bond states made from these orbital configurations are in the

forms of standard tableau functions which are employed directly in constructing the re-

quired matrices,23 whereas in the spectral-product representation the hydrogen atom 2Se

and carbon atom [(2)3Pe, (2)1De, (2)1Se, 5So, 3Do, 3Po, 1Do, 3So, 1Po] multiplet states are

constructed and the spectral-product matrices of Eqs. (11) to (13) are evaluated employ-

ing algorithms and codes devised explicitly for this purpose. Specifically, the expression

Φ
(CH)
sp (r : R) = Φ

(CH)
vb (r : R) · V(CH)(R) is employed to affect the basis transformation,

where V(CH)(R) is a non-unitary matrix constructed from an ordered product of corre-
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sponding atomic H and C transformation matrices. This vb → sp transformation approach

is employed in constructions of the metric and Hamiltonian matrices in the spectral-product

representation from their forms calculated in the valence-bond representation.

In Figure 6 are shown eigenvalues of the doublet- and quartet-state metric matrix for

diatomic CH constructed in the aforementioned atomic valence configurations using an

optimized valence orbital basis.27 The solid lines refer to eigenvalues of the matrix in the

orthonormal spectral-product representation of Eq. (3), whereas the dashed lines are those

obtained in the same configurational basis employing the standard tableau functions of

valence-bond theory.23 The two sets of eigenvalues of Figure 6 are evidently quite different,

those in the valence-bond description grouping in accordance with the normalizations of

standard tableau functions transforming under particular irreducible representations of

Snt
and approaching different limits at large atomic separation. By contrast, there are

only three distinct highly degenerate eigenvalues of the spectral-product metric matrix

in Figure 6, which are seen to approach unity in accordance with the orthonormality

of the spectral-product representation. The small number of distinct eigenvalues of the

latter representation relates to use of only n = 1 shell hydrogen and n=2 shell carbon

multiplet configurations in the calculations and to the orthogonality of the representation.

Relatedly, although the allowable eigenvalue interval for CH is formally Q=7!/(6!1!1!)=7,

the representation employed in Figure 6 is too small to exhibit the full redundancy of the

basis of Eq. (4) in this case.

Just as the metric matrices obtained in the valence-bond and spectral-product representa-

tions generally differ, so also do the corresponding Hamiltonian matrices. Nevertheless, the

energy eigenvalues obtained from the two representations employing identical atomic con-

figurations must be identical, providing a useful test of the algorithms and codes devised to

perform the present calculations. In Figure 7 are shown low-lying potential energy curves

for CH obtained in (1s)2Se atomic hydrogen and (1s22s22p2)[3Pe,1De,1Se] atomic carbon

representations. The two sets of potential energy curves obtained from the valence-bond

and spectral-product representations are found to be identical, but to provide very poor

representations of the known accurate values.13 Specifically, although the ground state is
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correctly predicted to be of 2Π symmetry, the calculated chemical binding energy is much

too small, the predicted A2∆ state falls above the B2Σ− state, and no other chemically

bound states are predicted by the representation.

In Figure 8 are shown the results of calculations similar to those of Figure 7, now including

the additional atomic carbon n=2 shell multiplet configurations 1s22s2p3 and 1s22p4. The

former configuration gives rise to the important 5So and 3Do atomic carbon states which

are seen to have significant effect on the calculated potential energy curves. In particular,

the a4Σ−, A2∆, B2Σ−, and C2Σ+ state curves are significantly lower and in the accepted

order, a bound a4Σ− curve is now obtained, and the ground X2Π state is also more strongly

bound. The dramatic lowering of the a4Σ− state curve is due to the additional 4Σ− con-

figurational state function arising from the atomic carbon 1s22s2p3 valence configuration,

which is spectrally concentrated in and dissociates to the 5So atomic carbon state, whereas

the significant lowering of the A2∆ and B2Σ− state curves correlating with the excited

1De atomic carbon state is due to contributions in the spectral-product representation

from the high-lying (1s22s2p3)3Do atomic carbon state. Although population analysis can

also be employed to identify the presence of important configurations in calculated wave

functions, the atomic spectral concentration of particular atomic components in the rep-

resentation is particularly meaningful in that these states have physical significance, and

are not subjectively based on particular choices of basis sets, methods of calculation, or

analysis techniques. Moreover, the contributions from particular atomic-state products

are read off directly from the eigenvectors obtained in the representational basis without

further manipulations.

C. Triatomic CH2 Molecule.

The methylene molecule has played an important role in the development of accurate

quantum chemical methodologies,14 and is relevant in connection with the metric matrices

and atomic spectral compositions of molecular wave functions of interest here. Calculations

similar to those reported above for the CH molecule help to further clarify aspects of these

issues, employing atomic multiplet configurational models for illustrative purposes.
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In Figure 9 are shown metric matrix eigenvalues in both valence-bond and spectral-product

representations employing the hydrogen atom 1s and carbon atom 1s2(2s22p2+2s2p3+2p4)

configurations described in the preceding Section. In this case, the redundancy factor for

the corresponding basis of Eq. (4) is Q = 8!/(6!1!1!) = 56, although the closed 1s2

carbon and 1s hydrogen shells, and the absence of higher orbital excitations, limits the

calculated eigenvalues to a much smaller spectral interval. As in Figure 6 for the CH

molecule, the eigenvalues of Figure 9 are very different in the two representations, with the

degenerate spectral-product values uniformly approaching unity at large atomic separation

and those in the valence-bond representation forming distinct groups associated with the

normalizations of standard tableau functions transforming under the different irreducible

representations of Snt
. Of course, the corresponding Hamiltonian matrices in the two

representations also differ, although the energy eigenvalues must be identical when the

same orbital configurations are employed in the two developments.

In Figures 10 and 11 are shown triplet- and singlet-state potential energy curves for

methylene in symmetric collinear (H-C-H) arrangements obtained in the multiplet car-

bon (1s22s22p2) and hydrogen (1s) atomic configurations employed in the foregoing. The

lowest-lying potential curves in this minimal valence multiplet representation are seen to

be very weakly bound 3Πg and 1Πg states, whereas the correct lowest-energy triplet and

singlet states in symmetric collinear CH2 arrangement are known to be the X3Σ−
g and a1∆g

states.14 Additionally, all other curves in Figures 10 and 11 are seen to be strongly non-

bonding. Clearly, the minimal multiplet representation fails to provide even qualitatively

correct descriptions of the potential energy curves in CH2.

In Figures 12 and 13 are shown potential energy curves for the states of Figures 10 and 11,

now constructed employing the full carbon atom 1s2(2s22p2 + 2s2p3 + 2p4) valence-shell

configurations also employed in the preceding CH molecule calculations. As in the case of

CH, there are dramatic changes in the CH2 potential curves of Figures 12 and 13 relative to

those of Figures 10 and 11. Specifically, the X3Σ−
g state is seen to become the lowest energy

state, the a1∆g states becomes the lowest-lying single state, and the c1Σ+
g state becomes

the first excited singlet, in accord with the results of accurate calculations.14 The lowering
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of the X3Σ−
g potential curve is a consequence of the additional 3Σ−

g configuration arising

from the presence of the 5So carbon atom state in the larger representation, whereas the

lowering of the a1∆g and c1Σ+
g states is due to molecular states associated with the high-

lying 3Do carbon atom state in the larger atomic representation employed. These assertions

are based on examinations of the eigenvectors of the corresponding states, emphasizing the

convenience of the atomic spectral-product representation for chemical diagnostic purposes.

IV. Discussion and Concluding Remarks

The spectral-product approach to ab initio molecular electronic structure calculations

would seem to provide a fresh perspective of sufficient promise to warrant further effort in

its computational implementation. The theoretical development presented in Section II is

largely pedestrian in nature, but demonstrates rigorously the formal equivalence between

enforcement of electron antisymmetry prior to or subsequent to Hamiltonian matrix eval-

uation in the atomic spectral-product representation. In the case of prior enforcement, the

totally antisymmetric but redundant representation employed gives rise to Hamiltonian

matrix elements each of which formally depends on the positions of all the atoms in the

aggregate, requiring repeated evaluations of such matrix elements in construction of poten-

tial energy surfaces. Moreover, the linearly-independent subspace of this redundant repre-

sentation must be isolated to avoid encountering computational instabilities in obtaining

molecular energy eigenfunctions and eigenvalues. By contrast, the post-antisymmerization

approach employs a complete but not over-complete representation which gives rise to

Hamiltonian matrix elements which can potentially be evaluated once and for all and

retained for repeated polyatomic applications. There remains the task in this approach

of isolating the totally antisymmeric subspace of the spectral-product representation to

obtain the physically significant molecular eigenstates.

The matrix representing the total antisymmetrizer in the spectral-product basis, which

is seen from the development of Section II to be equivalent to the metric matrix of its

antisymmetrized form, provides a method for isolating the totally antisymmetric subspace

of the spectral-product representation, as well as the linearly-independent subspace of its

antisymmetric form, by unitary transformation of the Hamiltonian matrix. This unitary-
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transformation approach to antisymmetrization provides an alternative to prior global

antisymmetrization which need not entail direct diagonalization of the complete aggregate

metric matrix. Rather, alternatives can be devised to distinguish among atomic interac-

tions for which antisymmetry is strictly required and those interactions for which it is not

required. Since only overlap integrals are needed in evaluations of the metric matrix, with

one- and two-electron energy integrals not needed for this purpose, there is considerable

opportunity to develop approximation methods which can take advantage of the atomic

pairwise-interaction nature of the aggregate Hamiltonian matrix.

The computational applications to simple molecules (H2, H3, CH, CH2) reported in Section

III illustrate the role of the eigenvalue spectrum of the metric matrix in simple diatomic

and polyatomic cases in assessing closure in the spectral-product representation, and in cor-

respondingly identifying redundancy in its explicitly antisymmetrized form. The allowable

range of the eigenvalue spectrum in the spectral-product basis [0, Q = nt!/(n1!n2! · · ·nN !)]

is seen to be determined by the number of electrons in each atom and the total sum of

these in the particular normalization of the antisymmetrizer employed. Convergence of the

eigenvalues to the extreme points of the allowable range (0 and Q), in accordance with the

compact-operator nature of the total antisymmetrizer, corresponds to the separation of

totally antisymmetric and non-totally antisymmetric states in the spectral-product basis,

or, equivalently, to the separation of linearly-independent and linearly-dependent states

in its antisymmetrized form. The introduction of additional terms in the representation,

particularly of the charge-transfer terms commonly employed in molecular calculations, is

seen to disrupt this simple picture, and to extend the allowable range of the eigenvalue

spectrum to accommodate the additional basis-set redundancy introduced. It seems clear

that the metric matrix provides a device for developing suitable atomic spectral-product

representations entirely in the absence of the molecular electronic energy calculations com-

monly employed in devising orbital basis sets for use in more conventional calculations.

The illustrative molecular energy calculations reported in Section III do not provide defini-

tive quantitative results for the simple molecules studied (H2, CH, CH2), but rather demon-

strate to some degree the capabilities of the valence-bond- and Slater-orbital-based algo-
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rithms and codes devised for this purpose, as well as the nature of the descriptor of molec-

ular electronic structures the development provides. Calculations of the twelve excited-

state potential energy curves in H2 dissociating to the n = 2 atomic limit, obtained from

straightforward diagonalizations of singlet and triplet full configuration-interaction energy

matrices constructed with standard Slater-orbital basis sets, are found to be in good accord

with the most accurate calculations available, as obtained largely but not entirely from a

series of individual calculations performed with special basis sets not applicable to other

molecules more generally. Additionally, the important role of the 2s2p3 configuration in

atomic carbon is understood from the new atomic spectral-composition perspective pro-

vided by the spectral-product development. Specifcally, the contributions to molecular CH

and CH2 eigenstates from 5S0 and 3D0 atomic carbon states which arise specifically from

the 2s2p3 configuration are seen to have significant qualitative and quantitative effects on

the positions and shapes of selected potential energy curves. Whereas descriptions of such

effects in terms of orbital configurations are clearly subjective, the perspective provided by

the spectral compositions of molecular electronic wave functions in the spectral-product

representation is not, and involves the physically significant many-electron atomic eigen-

states of the bonding atoms. It would seem the spectral-product representation provides

both a conceptual and a computational basis for studies of molecular electronic eigenstates.

Additional calculations not reported here involving H, C, N, and O atom-containing com-

pounds largely support and amplify the foregoing general conclusions. Studies in progress

are now focused on development of signifcantly more efficient and robust computational

methods for performing spectral-product calculations, use of larger Slater-orbital repre-

sentations, and novel means of isolating the required invariant totally antisymmetric sub-

spaces. Progress in these areas will be reported elsewhere in due course.
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Figure 1. Eigenvalues of the doublet-state metric matrix of Eq. (13) for symmetric

(Rab = Rbc) collinear H3 as functions of atomic separation (Ha-Hb-Hc): Panel (a) 2s1p

atomic basis (375 terms); Panel (b) 3s2p atomic basis (2187 terms). The limiting points

of the spectra are 0 and Q = 3!/(1!1!1!) = 6, specifying the redundancy of the basis of Eq.

(4) in this case.
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Figure 2. Constant-value contours for the two doublet eigenvalue surfaces of the metric

matrix of Eq. (13) for T-shaped arrangements in H3 constructed in a minimal 1s3 rep-

resentation. Panel (a) - solid lines give the upper surface; Panel (b) - solid lines give the

lower surface, employing increments/decrements of 0.1 between adjacent contours in each

case. The cusps in the contours of both panels indicate the presence of the seam of crossing

of the two surfaces along the w = 1.155 h line, corresponding to D3h symmetry.25
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Figure 3. Eigenvalues of the singlet- and triplet-state metric matrix of Eq. (13) for

diatomic hydrogen constructed in a 7s5p3d2f1g Sturmian Slater basis set,27 including

both covalent (119) and ionic or charge-transfer (154) terms. The origins of the structures

evident in the plot, and of the spectral interval (0,4) in this case, are discussed in the text.
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Figure 4. Singlet-state potential energy curves dissociating to n=1 and 2 limits in di-

atomic hydrogen, obtained from full (1953 terms) configuration-interaction calculations in

an optimized 5s3p2d1f valence basis of Slater orbitals.27

This page is Distribution A: approved for public release; distribution unlimited. Page 27



2 4 6 8 10 12
R (a0)

0

3

6

9

12

15
En

er
gy

 (e
V

)

b3Σu
+

a3Σg
+

c3Πu

e3Σu
+

i3Πg

h3Σg
+

f3Πu

Figure 5. Triplet-state potential energy curves dissociating to n=1 and 2 limits in di-

atomic hydrogen, obtained from full (1891 terms) configuration-interaction calculations in

an optimized 5s3p2d1f valence basis of Slater orbitals.27
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Figure 6. Eigenvalues of the doublet- and quartet-state metric matrix of Eq. (13)

for diatomic CH, constructed employing hydrogen (1s) and carbon 1s2(2s22p2 + 2s2p3 +

2p4) multiplet atomic configurations in an optimized valence orbital basis.27 The solid

lines refer to eigenvalues of the matrix in the orthonormal spectral-product representation,

whereas the dashed lines are those obtained in the same configurational basis employing

the normalization conventions of the standard tableau functions of valence-bond theory.23
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Figure 7. Potential energy curves for diatomic CH constructed employing minimal

valence-shell multiplet carbon (1s22s22p2) and hydrogen (1s) atomic configurations. The

spectroscopic state labels employed follow conventions from experimental and previously

reported theoretical studies.13
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Figure 8. Potential energy curves for diatomic CH obtained in valence-shell multiplet

carbon 1s2(2s22p2 + 2s2p3 + 2p4) and hydrogen (1s) atomic configurations. The state

designations of the lower-lying curves are as in Figure 7, whereas the additional curves

dissociating to the 5So and 3Do carbon-atom limits are labeled employing conventional

spectroscopic notation.13
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Figure 9. Eigenvalues of the singlet- and triplet-state metric matrix of Eq. (13) for sym-

metric collinear (H-C-H) methylene arrangements, constructed employing valence-shell

multiplet carbon 1s2(2s2p2 + 2s2p3 + 2p4) and hydrogen (1s) atomic configurations. The

solid lines refer to eigenvalues of the matrix constructed in the orthonormal spectral-

product representation, whereas the dashed lines are those obtained in the same configu-

rational basis employing the normalization conventions of the standard tableau functions

of valence-bond theory.23
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Figure 10. Potential energy curves for triplet methylene states in symmetric collinear

(H-C-H) arrangements obtained in minimal valence-shell multiplet carbon (1s22s22p2) and

hydrogen (1s) atomic configurations. The ground X3Σ−
g state is labeled on basis of exper-

imental and previously reported theoretical studies,14 whereas the other states are given

sequential numerical labels.
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Figure 11. Potential energy curves for singlet methylene states in symmetric collinear

(H-C-H) arrangement obtained in minimal valence-shell multiplet carbon (1s22s22p2) and

hydrogen (1s) atomic configurations. The two states given spectroscopic state labels follow

conventions from experimental and previously reported theoretical studies,14 whereas the

other states are given sequential numerical labels.
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Figure 12. Potential energy curves for triplet methylene states in symmetric collinear

(H-C-H) arrangements obtained in valence-shell multiplet carbon 1s2(2s22p2+2s2p3+2p4)

and hydrogen (1s) atomic configurations. The state designations of the curves are as in

Figure 10.
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Figure 13. Potential energy curves for singlet methylene states in symmetric collinear

(H-C-H) arrangement obtained in valence-shell multiplet carbon 1s2(2s22p2 +2s2p3 +2p4)

and hydrogen (1s) atomic states. The state designations of the curves are as in Figure 11.
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